Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PEO-generated Surfaces Support Attachment and Growth of Cells In Vitro with No Additional Benefit for Micro-roughness in Sa (0.2-4 μm).

In Vivo 2016 January
BACKGROUND/AIM: Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation, is a promising electrochemical surface treatment technique for metals which has been used for the generation of various material surfaces and has been the focus of recent biomaterial research. It has been hypothesized that rough PEO surfaces should generally have properties that support cellular attachment and proliferation. However, this has not yet been demonstrated in systematically conducted studies. The present study investigated fibroblast cell proliferation and attachment to ground, electric discharge machining (EDM) and PEO-treated titanium surfaces differing in roughness and porosity.

MATERIALS AND METHODS: Three surface variants with 'smoother', 'medium-coarse' and 'rough' surface topographies were generated by PEO and EDM on specimens of titanium alloy (with 6 wt% aluminum and 4 wt% vanadium) for comparison with more smoothly ground specimens. The in vitro effects on cellular attachment and proliferation were determined in 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), 5-bromo-2'-deoxyuridine (BrdU) and live/dead staining assays with L929 fibroblasts cultivated directly on the metal specimens. Cytocompatibility was determined in accordance with DIN 10993-5/-12 regulations by extract assays.

RESULTS: Besides cytocompatibility, all PEO specimens exhibited similar biocompatibility and attachment properties, with vital, spindle-shaped adherent cells growing on the surface, regardless of their surface topology. There were no significant differences in cellular proliferation between the different surfaces and negative controls (cells growing in cell-culture plates).

DISCUSSION/CONCLUSION: With no differences in cellular proliferation and attachment between PEO surfaces with different roughness, we find no evidence to support the notion that rougher PEO surfaces are more favorable for cellular growth of fibroblasts in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app