Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cardiopulmonary effects of dexmedetomidine in sevoflurane-anesthetized sheep with and without nitric oxide inhalation.

OBJECTIVE: To determine whether inhaled nitric oxide (NO) prevents pulmonary hypertension and improves oxygenation after i.v. administration of a bolus of dexmedetomidine in anesthetized sheep.

ANIMALS: 6 healthy adult sheep.

PROCEDURE: In a crossover study, sevoflurane-anesthetized sheep received dexmedetomidine (2 microg/kg, i.v.) without NO (DEX treatment) or with inhaled NO (DEX-NO treatment). Cardiopulmonary variables, including respiratory mechanics, were measured before and for 120 minutes after bolus injection of dexmedetomidine.

RESULTS: Dexmedetomidine induced a transient decrease in heart rate and cardiac output. A short-lived increase in mean arterial pressure (MAP) and systemic vascular resistance (SVR) was followed by a significant decrease in MAP and SVR for 90 minutes. Mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance increased transiently after dexmedetomidine injection. The Pao2 was significantly decreased 3 minutes after injection and reached a minimum of (mean +/- SEM) 13.3 +/- 78 kPa 10 minutes after injection. The decrease in Pao2 was accompanied by a sudden and prolonged decrease in dynamic compliance and a significant increase in airway resistance, shunt fraction, and alveolar dead space. Peak changes in MPAP did not differ between the 2 treatments. For the DEX-NO treatment, Pao2 was significantly lower and the shunt fraction significantly higher than for the DEX treatment.

CONCLUSIONS AND CLINICAL RELEVANCE: Inhalation of NO did not prevent increases in pulmonary arterial pressures induced by i.v. administration of dexmedetomidine. Preemptive inhalation of NO intensified oxygenation impairment, probably through increases in intrapulmonary shunting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app