Add like
Add dislike
Add to saved papers

Phosphate ester cleavage in ribose-5-phosphate induced by OH radicals in deoxygenated aqueous solution. The effect of Fe(II) and Fe(III) ions.

The reaction of OH radicals and H atoms with ribose-5-phosphate (10(-2) M) in deoxygenated aqueous solution at room temperature (dose-rate 2-1 X 10(17) eV/ml-min, dose 5 X 10(18)-15 X 10(18) eV/ml) leads to the following dephosphorylation products (G-values): ribo-pentodialdose 1 (0-2), 2-hydroxy-4-oxoglutaraldehyde 2 (0-06), 5-deoxy-erythro-pentos-4-ulose 3 (0-1) and 3-oxoglutaraldehyde 4 (0-06). In addition, some minor phosphate free products (total G=0-09) are formed. G(inorganic phosphate) =1-3 and G(H2O2)=0-3. On the addition of 10(-3) M (Fe(III) ions, G (1) and G (3) increase to 0-6 and 0-4 respectively. In the presence of 10(-3) M Fe(II), G(1) and G(3) change to 0-4 and 0-8, respectively. The other dephosphorylation products are suppressed by the iron ions. G(1) also increases on the addition of increasing amounts of H2O2. Each product can be assigned a precursor radical formed by hydrogen abstraction from C-5, C-4 or C-3 of the ribose-5-phosphate molecule. Products 1 and 2 are formed by oxydative dephosphorylation of an alpha-phospho radical with preceeding H2O elimination for product 2. Elimination of H3PO4 from a beta-phospho radical leads to product 3; product 4 is formed by elimination of two molecules of H2O from its precursor radical and hydrolytic cleavage of an enol phosphate bond. Deuterium-labelling experiments and the effects of the iron ions and of H2O2 support the mechanisms proposed. The importance of the dephosphorylation mechanisms for the formation of strand breaks in DNA is discussed with special reference to the effects of the radiosensitizers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app