Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle fibers.

Two groups of male subjects were studied to examine the effects of different exercise protocols on performance of an isokinetic, short-time strength test, the performance of which is related to fast twitch (FT) muscle fiber recruitment. The laboratory group (LG) (n = 10) cycled (30 min, 70% VO2 max), ran (75 min), and performed repeated bouts of "sprint" cycling and rapid, maximal contractions of the quadriceps. The marathon group (MG) (n = 7) participated in and completed Stockholm's Marathon 1979. A strength test was performed before and within 1-2 h after completion of the group exercise protocol. The m. vastus lateralis was biopsied and muscle fibers classified as slow twitch (ST) or FT. After periodic acid-Schiff staining fibers were qualitatively classified as to glycogen content. In LG significant glycogen depletion occurred in both fiber types and in MG predominantly ST fibers were exhausted of glycogen after the exercise protocol. The glycogen exhaustion from both fiber types in LG was associated with impaired maximal muscular strength produced during a single dynamic contraction, as well as with reduced muscle fatigue patterns. When glycogen exhaustion was induced in ST muscle fibers only in the MG, no impairment was observed for maximal muscular strength but fatigue during 50 consecutive contractions was significantly increased.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app