Add like
Add dislike
Add to saved papers

Mycobacterial SapM hampers host autophagy initiation for intracellular bacillary survival via dephosphorylating Raptor.

IScience 2024 May 18
Secreted acid phosphatase (SapM) is an immunomodulator of Mycobacterium tuberculosis (Mtb) and consequently plays a crucial role in disease onset and development upon infection. Importantly, the virulence of SapM has rendered SapM an attractive target for drug development. However, the mechanism underlying the role of SapM in facilitating bacillary survival remains to be fully elucidated. In this context, the present study demonstrated that SapM hampered cellular autophagy to facilitate bacillary survival in  mycobacterial -infected macrophages. Mechanically, SapM interacted with Raptor and was localized to the subcellular lysosomal organelle, causing the dephosphorylation of Raptor at the Ser792 position, resulting in mTORC1 hyperactivity and the subsequent autophagy inhibition. Consistent with this, SapM blocked the autophagy initiation and mitigated lung pathology in vivo . These findings highlighted the role of Raptor as a significant substrate of SapM for inhibiting autophagy, which is a novel clue for developing a treatment against tuberculosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app