Add like
Add dislike
Add to saved papers

Cu(dppf) complexes can be synthesized from Cu-exchanged solids and enable a quantification of the Cu-accessibility by 31 P MAS NMR spectroscopy.

Herein, we apply three different copper-exchanged materials (Na-[Al]SBA-15, silica, Na-MCM-22) as hosts for a direct synthesis of CuI (1,1'-bis(diphenylphosphino)ferrocene = dppf) complexes in cationic ion exchange position. Using 31 P MAS NMR spectroscopy, we show that identical complexes as after ion exchange are generated if the solids are applied as reactants directly. The homogeneity of copper exchanges is evaluated by EDX spectroscopy. Both CuI and CuII result in the formation of complexes, thereby oxidizing dppf. Cu-particles were not reactive. Optimized conditions for a maximized complex formation are identified applying quantitative 31 P MAS NMR spectroscopy and ICP-OES. Only accessible copper in cationic position of the solids forms the complexes. This enables a quantification of the amount of copper in mesopores vs. the total copper amount. Thus, besides a new synthesis of the complex a suitable method for quantitative elucidation of the location of copper cations is demonstrated herein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app