Add like
Add dislike
Add to saved papers

Development of a multiplex droplet digital PCR assay for simultaneous detection and quantification of Escherichia coli, E. marmotae, and E. Ruysiae in water samples.

Escherichia coli are widely used by water quality managers as Fecal Indicator Bacteria, but current quantification methods do not differentiate them from benign, environmental Escherichia species such as E. marmotae (formerly named cryptic clade V) or E. ruysiae (cryptic clades III and IV). Reliable and specific techniques for their identification are required to avoid confounding microbial water quality assessments. To address this, a multiplex droplet digital PCR (ddPCR) assay targeting lipB (E. coli and E. ruysiae) and bglC (E. marmotae) was designed. The ddPCR performance was assessed using in silico analysis; genomic DNA from 40 local, international, and reference strains of target and non-target coliforms; and spiked water samples in a range relevant to water quality managers (1 to 1000 cells/100 mL). Results were compared to an analogous quantitative PCR (qPCR) and the Colilert method. Both PCR assays showed excellent sensitivity with a limit of detection of 0.05 pg/μL and 0.005 pg/μl for ddPCR and qPCR respectively, and of quantification of 0.5 pg/μL of genomic DNA. The ddPCR allowed differentiation and quantification of three Escherichia species per run by amplitude multiplexing and showed a high concordance with concentrations measured by Colilert once proportional bias was accounted for. In silico specificity testing underlined the possibility to further detect and distinguish Escherichia cryptic clade VI. Finally, the applicability of the ddPCR was successfully tested on environmental water samples where E. marmotae and E. ruysiae potentially confound E. coli counts based on the Most Probable Number method, highlighting the utility of this novel ddPCR as an efficient and rapid discriminatory test to improve water quality assessments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app