Add like
Add dislike
Add to saved papers

A Framework for Improving the Generalizability of Drug-Target Affinity Prediction Models.

Statistical models that accurately predict the binding affinity of an input ligand-protein pair can greatly accelerate drug discovery. Such models are trained on available ligand-protein interaction data sets, which may contain biases that lead the predictor models to learn data set-specific, spurious patterns instead of generalizable relationships. This leads the prediction performances of these models to drop dramatically for previously unseen biomolecules. Various approaches that aim to improve model generalizability either have limited applicability or introduce the risk of degrading overall prediction performance. In this article, we present DebiasedDTA, a novel training framework for drug-target affinity (DTA) prediction models that addresses data set biases to improve the generalizability of such models. DebiasedDTA relies on reweighting the training samples to achieve robust generalization, and is thus applicable to most DTA prediction models. Extensive experiments with different biomolecule representations, model architectures, and data sets demonstrate that DebiasedDTA achieves improved generalizability in predicting drug-target affinities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app