Add like
Add dislike
Add to saved papers

A model for personalized diagnostics for non-specific low back pain: the role of the myofascial unit.

Low back pain (LBP) is the leading cause of disability worldwide. Most LBP is non-specific or idiopathic, which is defined as symptoms of unknown origin without a clear specific cause or pathology. Current guidelines for clinical evaluation are based on ruling out underlying serious medical conditions, but not on addressing underlying potential contributors to pain. Although efforts have been made to identify subgroups within this population based on response to treatment, a comprehensive framework to guide assessment is still lacking. In this paper, we propose a model for a personalized mechanism-based assessment based on the available evidence that seeks to identify the underlying pathologies that may initiate and perpetuate central sensitization associated with chronic non-specific low back pain (nsLBP). We propose that central sensitization can have downstream effects on the "myofascial unit", defined as an integrated anatomical and functional structure that includes muscle fibers, fascia (including endomysium, perimysium and epimysium) and its associated innervations (free nerve endings, muscle spindles), lymphatics, and blood vessels. The tissue-level abnormalities can be perpetuated through a vicious cycle of neurogenic inflammation, impaired fascial gliding, and interstitial inflammatory stasis that manifest as the clinical findings for nsLBP. We postulate that our proposed model offers biological plausibility for the complex spectrum of clinical findings, including tissue-level abnormalities, biomechanical dysfunction and postural asymmetry, ecological and psychosocial factors, associated with nsLBP. The model suggests a multi-domain evaluation that is personalized, feasible and helps rule out specific causes for back pain guiding clinically relevant management. It may also provide a roadmap for future research to elucidate mechanisms underlying this ubiquitous and complex problem.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app