Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Autozygosity mapping and time-to-spontaneous delivery in Norwegian parent-offspring trios.

Human Molecular Genetics 2021 Februrary 5
Parental genetic relatedness may lead to adverse health and fitness outcomes in the offspring. However, the degree to which it affects human delivery timing is unknown. We use genotype data from ≃25 000 parent-offspring trios from the Norwegian Mother, Father and Child Cohort Study to optimize runs of homozygosity (ROH) calling by maximizing the correlation between parental genetic relatedness and offspring ROHs. We then estimate the effect of maternal, paternal and fetal autozygosity and that of autozygosity mapping (common segments and gene burden test) on the timing of spontaneous onset of delivery. The correlation between offspring ROH using a variety of parameters and parental genetic relatedness ranged between -0.2 and 0.6, revealing the importance of the minimum number of genetic variants included in an ROH and the use of genetic distance. The optimized compared to predefined parameters showed a ≃45% higher correlation between parental genetic relatedness and offspring ROH. We found no evidence of an effect of maternal, paternal nor fetal overall autozygosity on spontaneous delivery timing. Yet, through autozygosity mapping, we identified three maternal loci TBC1D1, SIGLECs and EDN1 gene regions reducing the median time-to-spontaneous onset of delivery by ≃2-5% (P-value < 2.3 × 10-6). We also found suggestive evidence of a fetal locus at 3q22.2, near the RYK gene region (P-value = 2.0 × 10-6). Autozygosity mapping may provide new insights on the genetic determinants of delivery timing beyond traditional genome-wide association studies, but particular and rigorous attention should be given to ROH calling parameter selection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app