Add like
Add dislike
Add to saved papers

Suitability of Cu-substituted β-Mn 2 V 2 O 7 and Mn-substituted β-Cu 2 V 2 O 7 for photocatalytic water-splitting.

The pyrovanadates β-Mn2 V2 O7 and β-Cu2 V2 O7 were previously investigated as photoanode materials for water splitting. Neither of them, however, was found to be sufficiently active. In this work, we predict the properties of these two structurally similar pyrovanadates upon Cu/Mn substitution in their corresponding lattices via density functional theory calculations to explore the suitability of their band structure for water splitting and to assess their ease of synthesis. We predict that a concentration of up to 20% Cu and Mn into β-Mn2 V2 O7 and β-Cu2 V2 O7 , respectively, leads to a narrowing of the bandgap, which, in the former case, is experimentally confirmed by UV-vis spectroscopy. Calculations in the intermediate composition range, however, yield nearly constant bandgaps. Moreover, we predict the materials with higher substitution levels to be increasingly difficult to synthesize, implying that low substitution levels are most relevant in terms of bandgaps and ease of synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app