Add like
Add dislike
Add to saved papers

Morphological investigation on phenylhydrazine-induced erythropoiesis in the adult mouse liver.

In adult mice suffering from a phenylhydrazine (PHZ)-induced hemolytic anemia, erythropoietic islands were observed in the liver. These islands were studied with the light and electron microscope. Within two days after the beginning of four daily injections of PHZ, erythoid elements appeared in the sinusoids and central veins. A maximum number of erythroblasts was found on day 7. Light and electron microscopic observations revealed that the erythropoietic islands consisted of centrally located macrophages(CM) with a Kupffer cell-like morphology, surrounded by erythroblasts, which were often of the same maturation stage. CM in central veins (CM-V) and in sinusoids (CM-S) were found to have a different morphology. The CM-V phagocytized less circulating red blood cells and were in contact with a smaller number of erythroblasts. Furthermore, the contact areas between erythroblasts and CM-S extended for a much longer distance than those between erythroblasts and CM-V. The progenitor cell for the CM-V is most likely a monocyte, since cells which were morphologically determined as monocytes were found to appear on the first day of the PHZ treatment and differentiated into macrophages within about 2 days. The origin of the CM-S population was less clear, but could be monocytic as well. These data are tentatively explained as a migration of a progenitor of a cellular component of the erythroid micro-environment into the liver after appropriate stimuli. In contrast to fetal liver erythropoiesis, erythroblasts in the adult liver occurred only incidentally extrasinusoidally. Furthermore, specialized membrane contacts between erythroblasts and CM or hepatocytes could not be observed in adult liver. Ferritin could not be detected on the erythroid cell membrane or located in coated vesicles. Also, no ferritin could be observed within or attached to the finger-like processes of CM. The observations suggest that the coated vesicles in erythoid elements are partly exocytotic vesicles and are not specific for ferritin transport. The morphological aspects of PHZ-induced extramedullary erythropoiesis is discussed in relation to the hemopoietic microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app