Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of DNA topoisomerase I activity by 2',5'-oligoadenylates and mismatched double-stranded RNA in uninfected and HIV-1-infected H9 cells.

2',5'-Oligoadenylates (2-5As) inhibit the type I DNA topoisomerase activity both in uninfected and HIV-1-infected human T cell line H9 as well as the purified enzyme (calf thymus). Topoisomerase I activity was determined by measuring the relaxation of negatively supercoiled pBR322 DNA. Inhibition of topoisomerase I by 2-5A depends on the chain length of the oligomer and the presence of 5'-phosphate. The 5'-triphosphate of the 2-5A hexamer was most active (almost total inhibition of DNA relaxation at 10 microM concentration); the 2-5A core trimer (at 100 microM) displayed no significant effect. In crosslinking and immunoprecipitation experiments we present evidence that 2-5A (32P-labelled 2-5A derivative, ppp(A2'p)3 A[32P]pCp) is able to bind to nuclear topoisomerase I. The mismatched dsRNA, poly(I).poly(C12U) (Ampligen), exhibited a strong anti-HIV-1 activity. However, our data show that this antiviral effect is not related to topoisomerase I inhibition. On the other hand, we did observe the production of longer oligomers of 2-5A in cells treated with poly(I).poly(C12U). It remains speculative, whether the in vivo effect could be catalyzed by this activity of poly(I).poly(C12U). In addition we could show that 2-5A also inhibits topoisomerase I activity associated with isolated HIV-1 particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app