Add like
Add dislike
Add to saved papers

Inverted nucleation for photoinduced nonequilibrium melting.

Science Advances 2024 May 4
Ultrafast photoinduced melting provides an essential platform for studying nonequilibrium phase transitions by linking the kinetics of electron dynamics to ionic motions. Knowledge of dynamic balance in their energetics is essential to understanding how the ionic reaction is influenced by femtosecond photoexcited electrons with notable time lag depending on reaction mechanisms. Here, by directly imaging fluctuating density distributions and evaluating the ionic pressure and Gibbs free energy from two-temperature molecular dynamics that verified experimental results, we uncovered that transient ionic pressure, triggered by photoexcited electrons, controls the overall melting kinetics. In particular, ultrafast nonequilibrium melting can be described by the reverse nucleation process with voids as nucleation seeds. The strongly driven solid-to-liquid transition of metallic gold is successfully explained by void nucleation facilitated by photoexcited electron-initiated ionic pressure, establishing a solid knowledge base for understanding ultrafast nonequilibrium kinetics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app