Add like
Add dislike
Add to saved papers

Anxiety-, and depression-like behavior following short-term finasteride administration is associated with impaired synaptic plasticity and cognitive behavior in male rats.

Finasteride, a 5α-Reductase inhibitor, is used to treat male pattern baldness and benign prostatic hyperplasia. Several clinical studies show that chronic finasteride treatment induces persistent depression, suicidal thoughts and cognitive impairment and these symptoms are persistent even after its withdrawal. Previous results from our lab showed that repeated administration of finasteride for six days induces depression-like behavior. However, whether short-term finasteride administration induces anxiety-like behavior and memory impairment and alters synaptic plasticity are not known, which formed the basis of this study. Finasteride was administered to 2-2.5 months old male Wistar rats for six days and subjected to behavioral evaluation, biochemical estimation and synaptic plasticity assessment. Anxiety-like behavior was evaluated in the elevated plus maze (EPM), open field test (OFT), light/dark test (LDT), and novelty suppressed feeding test (NSFT), and learning and memory using novel object recognition test (NORT) and novel object location test (NOLT) and depression-like behavior in the sucrose preference test (SPT). Synaptic plasticity in the hippocampal Schaffer collateral-CA1 was evaluated using slice field potential recordings. Plasma corticosterone levels were estimated using ELISA. Finasteride administration induced anxiety-like behavior in the EPM, OFT, LDT and NSFT, and depression-like behavior in the SPT. Further, finasteride induced hippocampal dependent spatial learning and memory impairment in the NOLT. In addition, finasteride decreased basal synaptic plasticity and long-term potentiation (LTP) in the hippocampus. A trend of increased plasma corticosterone levels was observed following repeated finasteride administration. These results indicate the potential role of corticosterone and synaptic plasticity in finasteride-induced effects and further studies will pave way for the development of novel neurosteroid-based therapeutics in neuropsychiatric diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app