Add like
Add dislike
Add to saved papers

Self-reinforced MOF-based Nanogel Alleviates Osteoarthritis by Long-acting Drug Release.

Advanced Materials 2024 April 30
Intra-articular injection of drugs is an effective strategy for osteoarthritis (OA) treatment. However, the complex microenvironment and limited joint space result in rapid clearance of drugs. Herein, a nanogel-based strategy was proposed for prolonged drug delivery and microenvironment remodeling. Nanogel was constructed through functionalization of hyaluronic acid (HA) by amide reaction on the surface of Kartogenin (KGN)-loaded zeolitic imidazolate framework-8 (denoted as KZIF@HA). Leveraging the inherent hydrophilicity of HA, KZIF@HA spontaneously forms nanogels, ensuring extended drug release in the OA microenvironment. KZIF@HA exhibits sustained drug release over one month, with low leakage risk from the joint cavity compared to KZIF, enhanced cartilage penetration, and reparative effects on chondrocytes. Notably, KGN released from KZIF@HA serves to promote extracellular matrix (ECM) secretion for hyaline cartilage regeneration. Zn2+ release reverses OA progression by promoting M2 macrophage polarization to establish an anti-inflammatory microenvironment. Ultimately, KZIF@HA facilitates cartilage regeneration and OA alleviation within three months. Transcriptome sequencing validates that KZIF@HA stimulates the polarization of M2 macrophages and secretes IL-10 to inhibit the JNK and ERK pathways, promoting chondrocytes recovery and enhancing ECM remodeling. This pioneering nanogel system offers new therapeutic opportunities for sustained drug release, presenting a significant stride in OA treatment strategies. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app