Add like
Add dislike
Add to saved papers

Groundwater salinization risk assessment using combined artificial intelligence models.

Assessing the risk of groundwater contamination is of crucial importance for the management of water resources, particularly in arid regions such as Menzel Habib (south-eastern Tunisia). The aim of this research is to create and validate artificial intelligence models based on the original DRASTIC vulnerability methodology to explain groundwater salinization risk (GSR). To this end, several algorithms, such as artificial neural networks (ANN), support vector regression (SVR), and multiple linear regression (MLR), were applied to the Menzel Habib aquifer system. The results obtained indicate that the DRASTIC Vulnerability Index (VI) ranges from 91 to 141 and is classified into two categories: low and moderate vulnerability. However, the correlation between groundwater total dissolved solids (TDS) and the Vulnerability Index is relatively weak (r < 0.5). Indeed, the original DRASTIC index needs some improvements. To improve it, some adjustments are required, notably by incorporating the TDS-groundwater salinization risk (GSR) indicator. The seven parameters of the original DRASTIC model were used as inputs for the artificial intelligence models, while the GSR values were used as outputs. Performance indicators, such as the correlation coefficient (r) and the Willmott Agreement Index (d), showed that the ANN model outperformed the SVR and MLR models. Indeed, during the training phase, the ANN model obtained r values equal to 0.89 and d values of 0.4, demonstrating the superiority, robustness, and accuracy of ANN-based methodologies over the original DRASTIC model. The findings could provide valuable information to guide management of groundwater contamination risks, especially in arid regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app