Add like
Add dislike
Add to saved papers

Environmental concentrations of microplastic-induced gut microbiota and metabolite disruption in silkworm, Bombyx mori.

Chemosphere 2024 April 26
Microplastics (MPs) existing extensively in various ecosystems can be ingested by marine organisms and enter the food chain, resulting the health risks from the presence of MPs in aquatic and terrestrial ecosystems. In the present study, an ideal model for Lepidoptera, the silkworm, Bombyx mori, was exposed to environmental concentrations (0.125 μg, 0.25 μg or 0.5 μg/diet) of MPs for 5 days, and the global changes in gut microbes and metabolites were subsequently examined via 16S rDNA sequencing and GC‒MS-based metabolomics. The results showed that MPs exposure did not seriously threaten survival but may regulate signaling pathways involved in development and cocoon production. MPs exposure induced gut microbiota perturbation according to the indices of α-diversity and β-diversity, and the functional prediction of the altered microbiome and associated metabolites demonstrated the potential roles of the altered microbiome following MPs exposure in the metabolic and physiological states of silkworm. The metabolites markedly altered following MPs exposure may play vital biological roles in energy metabolism, lipid metabolism, xenobiotic detoxification and the immune system by directly or indirectly affecting the physiological state of silkworms. These findings contribute to assessing the health risks of MPs exposure in model insects and provide novel insight into the toxicity mechanism of MPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app