Add like
Add dislike
Add to saved papers

Rapid and sensitive parallel on-site detection of antibiotics and resistance genes in aquatic environments using evanescent wave dual-color fluorescence fiber-embedded optofluidic nanochip.

Environmental antibiotics and antibiotic resistance genes (ARGs) pose considerable threat to humans and animals; thus, the rapid and sensitive parallel detection of these pollutants from a single sample is urgently required. However, traditional multiplexed analytic technologies detect only one type of target (e.g., small molecules or nucleic acids) per assay. To address this issue, Evanescent wave Dual-color fluorescence Fiber-embedded Optofluidic Nanochip (EDFON) was fabricated by integrating a fiber-embedded optofluidic nanochip with evanescent wave dual-color fluorescence technology. The EDFON was used for the parallel quantitative detection of sulfamerazine (SMR) and MCR-1 with high sensitivity and specificity by combining a heterogeneous immunoassay with a homogenous hybridization chain reaction based on time-resolved effects. LODs of 0.032 μg/L and 35 pM was obtained for SMR and MCR-1, respectively, within 20 min. To our best knowledge, the EDFON is the first device for the simultaneous detection of two type of targets in each test, which is highly valuable to prevent the global threats of antibiotics and ARGs. Comparison with liquid chromatography-mass spectrometry showed a strong linear relationship (R2  = 0.998) for SMR pollution in the Qinghe River, with spiked SMR and MCR-1 negative surface and wastewater samples showing recovery rates of 91.8-113.4%. These results demonstrate the excellent accuracy and reliability of the EDFON, with features such as multi-analyte detection, field-deployment, and minimal-equipment, rendering it revolutionary for environmental monitoring, food safety, and medical diagnostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app