Add like
Add dislike
Add to saved papers

Continuous operation of nano-catalytic ozonation using membrane separation coupling system: influence factors and mechanism.

Chemosphere 2024 April 25
The application of nano-catalysts in improving the ozonation removal efficiency for refractory organic compounds has been extensively investigated. However, cost-effective nano-catalysts separation remains a challenge. In this study, membrane separation processes were employed to separate nano-MgO catalysts from an ozonation system. A continuous nano-catalytic ozonation membrane separation (nCOMS) coupling system was successfully constructed for treating quinoline. The results showed that long hydraulic retention time (HRT) and high nano-MgO dosage could improve the quinolone removal efficiency but shorten operation cycles. At the optimal operation conditions of HRT=4 h and nano-MgO dosage=0.2 g/L, the nCOMS system achieved a stable quinoline removal efficiency of 85.2% for 240 min running with a transmembrane pressure lower than 10 kPa. The quinoline removal efficiency contribution for ozonation, catalysis and membrane separation was 57.1%, 24.9% and 18.0%, respectively. Compared to ozonation membrane separation system, the fouling rate index of the nCOMS system increased by 60% under optimal conditions, but the irreversible fouling was reduced to 28%. In addition, the nCOMS system exhibited reduced adverse effects of coexisting natural organic matter (NOM) on quinoline removal and membrane fouling. In conclusion, the nCOMS system demonstrated higher quinoline removal efficiency, lower irreversible fouling, and reduced adverse effect of coexisting NOM, thereby signifying its potential for practical applications in advanced treatment of industrial wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app