Add like
Add dislike
Add to saved papers

Low-frequency MR elastography reveals altered deep gray matter viscoelasticity in multiple sclerosis.

NeuroImage : Clinical 2024 April 17
INTRODUCTION: Brain viscoelasticity as assessed by magnetic resonance elastography (MRE) has been discussed as a promising surrogate of microstructural alterations due to neurodegenerative processes. Existing studies indicate that multiple sclerosis (MS) is associated with a global reduction in brain stiffness. However, no study to date systematically investigated the MS-related characteristics of brain viscoelasticity separately in normal-appearing white matter (NAWM), deep gray matter (DGM) and T2-hyperintense white matter (WM) lesions.

METHODS: 70 MS patients and 42 healthy volunteers underwent whole-cerebral MRE using a stimulated echo sequence (DENSE) with a low-frequency mechanical excitation at 20 Hertz. The magnitude |G∗ | (Pa) and phase angle φ (rad) of the complex shear modulus G∗ were reconstructed by multifrequency dual elasto-visco (MDEV) inversion and related to structural imaging and clinical parameters.

RESULTS: We observed φ in the thalamus to be higher by 4.3 % in patients relative to healthy controls (1.11 ± 0.07 vs. 1.06 ± 0.07, p < 0.0001). Higher Expanded Disability Status Scale (EDSS) scores were negatively associated with φ in the basal ganglia (p = 0.01). We measured φ to be lower in MS lesions compared to surrounding NAWM (p = 0.001), which was most prominent for lesions in the temporal lobe (1.01 ± 0.22 vs. 1.06 ± 0.19, p = 0.003). Age was associated with lower values of |G∗ | (p = 0.04) and φ (p = 0.004) in the thalamus of patients. No alteration in NAWM stiffness relative to WM in healthy controls was observed.

CONCLUSION: Low-frequency elastography in MS patients reveals age-independent alterations in the viscoelasticity of deep gray matter at early stages of disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app