Add like
Add dislike
Add to saved papers

Finite Element Analysis and Design of a Flexible Thermoelectric Generator with a Rhombus Gap Structure.

Flexible thermoelectric generators (f-TEGs) offer an opportunity to realize wearable, self-powered electronic devices. A typical f-TEG consists of flexible electrodes and rigid thermoelectric (TE) legs in a flexible package. In the realm of f-TEGs utilizing flexible electrodes and TE cuboids, our unwavering objective lies in the attainment of enhanced flexibility and elevated energy conversion efficiency. In this paper, we employ a quasi-three-dimensional thermal model to design an f-TEG with a rhombus gap structure (E/A-RhTEG) with its optimized performance validated by simulation and experiment. Additionally, the lateral and vertical thermal resistances are introduced to further explain the optimizing principle in the f-TEG's output performance. Compared with the conventional TEG with a rectangular air gap structure (E/A-ReTEG), E/A-RhTEG demonstrates improved energy conversion efficiency to some extent. Simulation results indicate that the output power and energy conversion efficiency of a 25-np-pair E/A-RhTEG at a 30 K temperature gradient reach 8.45 mW and 2.55%, which represent a performance improvement of 3.09 and 6.28%, respectively, compared to E/A-ReTEG. To further elucidate the optimization principle in the performance of f-TEGs, additional considerations are given to the lateral and vertical resistances. In this study, E/A-RhTEG comprising 25 np pairs is fabricated utilizing TE cuboids. Experimental findings indicate that E/A-RhTEG exhibits a voltage output of 127.07 mV when subjected to a temperature difference of 30 K, which demonstrates a performance enhancement of 4.06% compared to E/A-ReTEG. Furthermore, this study also demonstrates its implementation when wrapped around a curved surface and successfully achieves a self-powered device system after device performance optimization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app