Add like
Add dislike
Add to saved papers

Enhanced phosphate adsorption and desorption characteristics of MgO-modified biochars prepared via direct co-pyrolysis of MgO and raw materials.

Biochar modified by metal ions-particularly Mg-is typically used for the effective recovery of phosphorous. In this study, MgO-modified biochars were synthesized via the direct co-pyrolysis of MgO and raw materials such as rice straw, corn straw, Camellia oleifera shells, and branches from garden waste, which were labeled as MRS, MCS, MOT, and MGW, respectively. The resulting phosphate (PO) adsorption capacities and potential adsorption mechanisms were analyzed. The PO adsorption capacities of the biochars were significantly improved after the modification with MgO: MRS (24.71 ± 0.32 mg/g) > MGW (23.55 ± 0.46 mg/g) > MOT (15.23 ± 0.19 mg/g) > MCS (14.12 ± 0.21 mg/g). PO adsorption on the modified biochars was controlled by physical adsorption, precipitation, and surface inner-sphere complexation processes, although no electrostatic attraction was observed. Furthermore, PO adsorbed on modified biochars could be released under acidic, alkaline, and neutral conditions. The desorption efficiency of MRS was modest, indicating its suitability as a slow-release fertilizer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app