Add like
Add dislike
Add to saved papers

Differentiation and characterization of healthy versus pathological tau using chemical exchange saturation transfer.

NMR in Biomedicine 2024 April 23
Neurofibrillary tangles of tau constitute one of the key biological hallmarks of Alzheimer's disease. Currently, the assessment of regional tau accumulation requires intravenous administration of radioactive tracers for PET imaging. A noninvasive MRI-based solution would have significant clinical implications. Herein, we utilized an MRI technique known as chemical exchange saturation transfer (CEST) to determine the imaging signature of tau in both its monomeric and pathologic fibrillated conformations. Three sets of purified recombinant full-length (4R) tau protein were prepared for collection of CEST spectra using a 9.4 T NMR spectrometer at varying temperatures (25, 37, and 42 °C) and RF intensities (0.7, 1.0, 1.5, and 2.2 μT). Monomeric and fibrillated tau were readily distinguished based on their Z-spectrum profiles. Fibrillated tau demonstrated a less prominent peak at 3.5 ppm with additional peaks near 0.5 and 1.5 ppm. No significant differences were identified between fibrillated tau prepared using heparin versus seed-competent tau. In conclusion, monomeric and fibrillated tau can be readily detected and distinguished based on their CEST-derived Z-spectra, pointing to the potential utility of CEST-MRI as a noninvasive biomarker of regional pathologic tau accumulation in the brain. Further testing and validation in vitro and in vivo will be necessary before this can be applied clinically.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app