Add like
Add dislike
Add to saved papers

Phase transformation and strengthening of the gas-atomized FeCoCrNiMo 0.5 Al 1.3 high-entropy alloy powder during annealing.

Heliyon 2024 April 31
Phase evolution and strengthening of the FeNiCoCrMo0.5 Al1.3 powder alloy produced via inert gas atomization and annealed in the temperature interval of 300-800 °C have been studied by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and microhardness testing. It was found that annealing at 300-600 °C leads to an increase of the element segregations between the several solid solutions with a rise of the lattice misfit (ε) to 1.5 % and microhardness growth to 1070 HV. It was assumed that elastic stress caused by the element partitioning is the main strengthening mechanism: microhardness rises linearly with misfit rise with dHV/dε  = 43400 MPa. Sigma arises after the maximum elastic deformation (in 1.5 %) was reached. Formation of the dispersed coherent sigma phase in the annealing interval 600-800 °C results in the microhardness rise. Oxidation that began at 800 °C in 27 h is accompanied with FCC formation due to a depletion of the B2 in Al caused by Al2 O3 formation. Estimation of the activation energy of the initial stage of the solid solution decomposition gives a very low value in 0.65eV, apparently caused by the high concentration of quenched vacancies. The activation energy of sigma formation approximately coincides with the activation energy of self-diffusion in BCC metals (about 2.60 eV).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app