Add like
Add dislike
Add to saved papers

Relatedness of hypoxia and hyperthermia tolerances in the Nile tilapia (Oreochromis niloticus) and their relationships with cardiac and gill traits.

In fish, thermal and hypoxia tolerances may be functionally related, as suggested by the oxygen- and capacity-limited thermal tolerance (OCLTT) concept, which explains performance failure at high temperatures due to limitations in oxygen delivery. In this study the interrelatedness of hyperthermia and hypoxia tolerances in the Nile tilapia (Oreochromis niloticus), and their links to cardiorespiratory traits were examined. Different groups of O. niloticus (n = 51) were subjected to hypoxia and hyperthermia challenges and the O2 tension for aquatic surface respiration (ASR pO2 ) and critical thermal maximum (CTmax) were assessed as measurement endpoints. Gill filament length, total filament number, ventricle mass, length and width were also measured. Tolerance to hypoxia, as evidenced by ASR pO2 thresholds of the individual fish, was highly variable and varied between 0.26 and 3.39 kPa. ASR events increased more profoundly as O2 tensions decreased below 2 kPa. The CTmax values recorded for the O. niloticus individuals ranged from 43.1 to 44.8 °C (Mean: 44.2 ± 0.4 °C). Remarkably, there was a highly significant correlation between ASR pO2 and CTmax in O. niloticus (r = -0.76, p < 0.0001) with ASR pO2 increasing linearly with decreasing CTmax. There were, however, no discernible relationships between the measured cardiorespiratory properties and hypoxia or hyperthermia tolerances. The strong relationship between hypoxia and hyperthermia tolerances in this study may be related to the ability of the cardiorespiratory system to provide oxygen to respiring tissues under thermal stress, and thus provides some support for the OCLTT concept in this species, at least at the level of the entire organism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app