Add like
Add dislike
Add to saved papers

Assessing the Influence of Thermocycling on Compressive Strength, Flexural Strength, and Microhardness in Green-Mediated Nanocomposite-Enhanced Glass Ionomer Cement Compared to Traditional Glass Ionomer Cement.

Curēus 2024 March
Background and objective Glass ionomer cement (GIC), also known as polyalkenoate cement, has been extensively used in dentistry for both luting and restorative purposes. Despite being the first choice for aesthetic restorations due to their chemical bonding ability to teeth, GICs have faced challenges such as low mechanical properties, abrasion resistance, and sensitivity to moisture, leading to the search for improved materials.  This study aims to assess the effects of thermocycling on the compressive, flexural strength, and microhardness of green-mediated nanocomposite-modified GIC in comparison to traditional GIC. Methodology Green-mediated nanoparticles, consisting of chitosan, titanium, zirconia, and hydroxyapatite (Ch-Ti-Zr-HA), were synthesized using a one-pot synthesis technique to form nanocomposites. These nanocomposites were then incorporated into GIC specimens in varying concentrations (3%, 5%, and 10%), denoted as Group I, Group II, and Group III, respectively. Group IV served as the control, consisting of conventional GIC. To assess the performance of the novel restorative materials over an extended period, compressive strength, flexural strength, and microhardness were measured before and after thermocycling using a universal material testing machine. Furthermore, scanning electron microscopy (SEM) analysis was carried out following the thermocycling process. The collected data were subjected to statistical analysis through one-way analysis of variance (ANOVA) and paired t-tests. Results  The findings demonstrated that, in comparison to the control group, both the mean compressive strength and flexural strength, as well as hardness, were notably higher for the 10% and 5% nanocomposite-modified GIC specimens before and after thermocycling ( P  < 0.05). Notably, there was no notable difference observed between the 5% and 10% concentrations ( P > 0.05). These results suggest that incorporating green-mediated nanocomposites (Ch-Ti-Zr-HA) modified GIC at either 5% or 10% concentration levels leads to improved mechanical properties, indicating their potential as promising alternatives in dental restorative materials. Conclusions Based on our findings, it can be inferred that the 10% and 5% concentrations of green-mediated (Ch-Ti-Zr-HA) modified GIC exhibit superior compressive and flexural strength compared to conventional GIC. Additionally, analysis of the scanning electron microscope (SEM) morphology revealed that green-mediated GIC displays smoother surface characteristics in contrast to conventional GIC. These results underscore the potential advantages of utilizing green-mediated nanocomposite-modified GIC in dental applications, suggesting enhanced mechanical properties and surface quality over conventional.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app