Add like
Add dislike
Add to saved papers

Integrative analysis of single-cell and bulk transcriptome data reveal the significant role of macrophages in lupus nephritis.

OBJECTIVE: We attempted to identify abnormal immune cell components and signaling pathways in lupus nephritis (LN) and to identify potential therapeutic targets.

METHODS: Differentially expressed genes (DEGs) between LN and normal kidney tissues were identified from bulk transcriptome data, and functional annotation was performed. The phenotypic changes in macrophages and aberrant intercellular signaling communications within immune cells were imputed from LN scRNA-seq data using trajectory analysis and verified using immunofluorescence staining. Finally, lentivirus-mediated overexpression of LGALS9, the gene encoding Galectin 9, in THP-1 cells was used to study the functional effect of this gene on monocytic cells.

RESULTS: From bulk transcriptome data, a significant activation of interferon (IFN) signaling was observed, and its intensity showed a significantly positive correlation with the abundance of infiltrating macrophages in LN. Analysis of scRNA-seq data revealed 17 immune cell clusters, with macrophages showing the highest enrichment of intercellular signal communication in LN. Trajectory analysis revealed macrophages in LN undergo a phenotypic change from inflammatory patrolling macrophages to phagocytic and then to antigen-presenting macrophages, and secrete various pro-inflammatory factors and complement components. LGALS9 was found significantly upregulated in macrophages in LN, which was confirmed by the immunofluorescence assay. Gene functional study showed that LGALS9 overexpression in THP-1 cells significantly elicited pro-inflammatory activation, releasing multiple immune cell chemoattractants.

CONCLUSION: Our results present an important pathophysiological role for macrophages in LN, and our preliminary results demonstrate significant pro-inflammatory effects of LGALS9 gene in LN macrophages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app