Add like
Add dislike
Add to saved papers

DP-GAN+B: A lightweight generative adversarial network based on depthwise separable convolutions for generating CT volumes.

X-rays, commonly used in clinical settings, offer advantages such as low radiation and cost-efficiency. However, their limitation lies in the inability to distinctly visualize overlapping organs. In contrast, Computed Tomography (CT) scans provide a three-dimensional view, overcoming this drawback but at the expense of higher radiation doses and increased costs. Hence, from both the patient's and hospital's standpoints, there is substantial medical and practical value in attempting the reconstruction from two-dimensional X-ray images to three-dimensional CT images. In this paper, we introduce DP-GAN+B as a pioneering approach for transforming two-dimensional frontal and lateral lung X-rays into three-dimensional lung CT volumes. Our method innovatively employs depthwise separable convolutions instead of traditional convolutions and introduces vector and fusion loss for superior performance. Compared to prior models, DP-GAN+B significantly reduces the generator network parameters by 21.104 M and the discriminator network parameters by 10.82 M, resulting in a total reduction of 31.924 M (44.17%). Experimental results demonstrate that our network can effectively generate clinically relevant, high-quality CT images from X-ray data, presenting a promising solution for enhancing diagnostic imaging while mitigating cost and radiation concerns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app