Add like
Add dislike
Add to saved papers

Development of a multiplex droplet digital PCR method for detection and monitoring of Mycobacterium tuberculosis and drug-resistant tuberculosis.

BACKGROUND: The prevalence of multidrug-resistant tuberculosis (MDR-TB) among Korean tuberculosis patients is about 4.1%, which is higher than the OECD average of 2.6%. Inadequate drug use and poor patient compliance increase MDR-TB prevalence through selective pressure. Therefore, prompt detection of drug resistance in tuberculosis patients at the time of diagnosis and quantitative monitoring of these resistant strains during treatment are crucial.

METHODS: A multiplex droplet digital PCR (ddPCR) assay was developed and assessed using DNA material of nine Mycobacterium tuberculosis strains with known mutation status that were purchased from the Korean National Tuberculosis Association. We collected a total of 18 MDR-TB residual samples referred for PCR analysis. Total DNA was extracted from the samples and subjected to the quadruplex ddPCR assay. Their results were compared to those of known resistance phenotypes.

RESULTS: The analytical sensitivity and specificity of the multiplex ddPCR assay for detecting INH, RIF, EMB, FQ, and SM resistance-causing mutations ranged from 71.43 to 100% and 94.12-100%, respectively. Follow-up sample results showed that the quadruplex ddPCR assay was sensitive enough to detect IS6110 and other mutations even after onset of treatment.

CONCLUSIONS: We developed a sensitive and accurate multiplex ddPCR assay that can detect the presence of tuberculosis quantitatively and resistance-conveying mutations concurrently. This tool could aid clinicians in the diagnosis and treatment monitoring of tuberculosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app