Add like
Add dislike
Add to saved papers

Variation in the mu-opioid receptor gene (OPRM1) moderates the influence of maternal sensitivity on child attachment.

The endogenous opioid system is thought to play an important role in mother-infant attachment. In infant rhesus macaques, variation in the μ-opioid receptor gene (OPRM1) is related to differences in attachment behavior that emerges following repeated separation from the mother; specifically, infants carrying at least one copy of the minor G allele of the OPRM1 C77G polymorphism show heightened and more persistent separation distress, as well as a pattern of increased contact-seeking behavior directed towards the mother during reunions (at the expense of affiliation with other group members). Research in adult humans has also linked the minor G allele of the analogous OPRM1 A118G polymorphism with greater interpersonal sensitivity. Adopting an interactionist approach, we examined whether OPRM1 A118G genotype and maternal (in)sensitivity are associated with child attachment style, predicting that children carrying the G allele may be more likely to develop an ambivalent attachment pattern in response to less sensitive maternal care. The sample consisted of 191 mothers participating with their children (n = 223) in the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) project, a community-based, birth cohort study of Canadian mothers and their children assessed longitudinally across the child's development. Maternal sensitivity was coded from at-home mother-child interactions videotaped when the child was 18 months of age. Child attachment was assessed at 36 months using the Strange Situation paradigm. As predicted, G allele carriers, but not AA homozygotes, showed increasing odds of being classified as ambivalently attached with decreasing levels of maternal sensitivity. Paralleling earlier non-human animal research, this work provides support for the theory that endogenous opioids contribute to the expression of attachment behaviors in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app