Add like
Add dislike
Add to saved papers

Neurocircuitry underlying the actions of glucagon-like peptide 1 and peptide YY 3 - 36 in the suppression of food, drug-seeking, and anxiogenesis.

Neuropeptides 2024 March 31
Obesity is a critical health condition worldwide that increases the risks of comorbid chronic diseases, but it can be managed with weight loss. However, conventional interventions relying on diet and exercise are inadequate for achieving and maintaining weight loss, thus there is significant market interest for pharmaceutical anti-obesity agents. For decades, receptor agonists for the gut peptide glucagon-like peptide 1 (GLP-1) featured prominently in anti-obesity medications by suppressing appetite and food reward to elicit rapid weight loss. As the neurocircuitry underlying food motivation overlaps with that for drugs of abuse, GLP-1 receptor agonism has also been shown to decrease substance use and relapse, thus its therapeutic potential may extend beyond weight management to treat addictions. However, as prolonged use of anti-obesity drugs may increase the risk of mood-related disorders like anxiety and depression, and individuals taking GLP-1-based medication commonly report feeling demotivated, the long-term safety of such drugs is an ongoing concern. Interestingly, current research now focuses on dual agonist approaches that include GLP-1 receptor agonism to enable synergistic effects on weight loss or associated functions. GLP-1 is secreted from the same intestinal cells as the anorectic gut peptide, Peptide YY3 - 36 (PYY3 - 36 ), thus this review assessed the therapeutic potential and underlying neural circuits targeted by PYY3 - 36 when administered independently or in combination with GLP-1 to curb the appetite for food or drugs of abuse like opiates, alcohol, and nicotine. Additionally, we also reviewed animal and human studies to assess the impact, if any, for GLP-1 and/or PYY3 - 36 on mood-related behaviors in relation to anxiety and depression. As dual agonists targeting GLP-1 and PYY3 - 36 may produce synergistic effects, they can be effective at lower doses and offer an alternative approach for therapeutic benefits while mitigating undesirable side effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app