Add like
Add dislike
Add to saved papers

ArcheD, a residual neural network for prediction of cerebrospinal fluid amyloid-beta from amyloid PET images.

Detection and measurement of amyloid-beta (Aβ) in the brain is a key factor for early identification and diagnosis of Alzheimer's disease (AD). We aimed to develop a deep learning model to predict Aβ cerebrospinal fluid (CSF) concentration directly from amyloid PET images, independent of tracers, brain reference regions or preselected regions of interest. We used 1870 Aβ PET images and CSF measurements to train and validate a convolutional neural network ("ArcheD"). We evaluated the ArcheD performance in relation to episodic memory and the standardized uptake value ratio (SUVR) of cortical Aβ. We also compared the brain region's relevance for the model's CSF prediction within clinical-based and biological-based classifications. ArcheD-predicted Aβ CSF values correlated with measured Aβ CSF values (r = 0.92; q < 0.01), SUVR (rAV45  = -0.64, rFBB  = -0.69; q < 0.01) and episodic memory measures (0.33 < r < 0.44; q < 0.01). For both classifications, cerebral white matter significantly contributed to CSF prediction (q < 0.01), specifically in non-symptomatic and early stages of AD. However, in late-stage disease, the brain stem, subcortical areas, cortical lobes, limbic lobe and basal forebrain made more significant contributions (q < 0.01). Considering cortical grey matter separately, the parietal lobe was the strongest predictor of CSF amyloid levels in those with prodromal or early AD, while the temporal lobe played a more crucial role for those with AD. In summary, ArcheD reliably predicted Aβ CSF concentration from Aβ PET scans, offering potential clinical utility for Aβ level determination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app