Add like
Add dislike
Add to saved papers

Bradykinin attenuates endothelial-mesenchymal transition following cardiac ischemia-reperfusion injury.

AIMS: Endothelial-mesenchymal transition (EndMT) is a crucial pathological process contributing to cardiac fibrosis. Bradykinin has been found to protect the heart against fibrosis. Whether bradykinin regulates EndMT has not been determined.

MATERIALS AND METHODS: Rats were subjected to ligation of the left anterior descending coronary artery for one hour and subsequent reperfusion to induce cardiac ischemia-reperfusion (IR) injury. Bradykinin (0.5μg/h) was infused by an osmotic pump implanted subcutaneously at the onset of reperfusion. Fourteen days later, the functional, histological, and molecular analyses were performed to investigate the changes in cardiac fibrosis and EndMT. Human coronary artery endothelial cells were utilized to determine the molecular mechanisms in vitro.

RESULTS: Bradykinin treatment improved cardiac function and decreased fibrosis following cardiac IR injury, accompanied by ameliorated EndMT and increased nitric oxide (NO) production. In vitro experiments found that bradykinin mitigated transforming growth factor β1 (TGFβ1)-induced EndMT. Significantly, the bradykinin B2 receptor antagonist or endothelial nitric oxide synthase inhibitor abolished the effects of bradykinin on EndMT inhibition, indicating that the bradykinin B2 receptor and NO might mediate the effects of bradykinin on EndMT inhibition.

CONCLUSION: Bradykinin plays an essential role in the process of cardiac fibrosis. Bradykinin preserves the cellular signature of endothelial cells, preventing them from EndMT following cardiac IR injury, possibly mediated by bradykinin B2 receptor activation and NO production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app