Add like
Add dislike
Add to saved papers

Equine mesenchymal stem cell-derived extracellular vesicle productivity but not overall yield is improved via 3-D culture with chemically defined media.

OBJECTIVE: Mesenchymal stem cell (MSC) extracellular vesicles (EVs) have emerged as a biotherapeutic for osteoarthritis; however, manufacturing large quantities is not practical using traditional monolayer (2-D) culture. We aimed to examine the effects of 3-D and 2-D culture 2 types of media: Dulbecco modified Eagle medium and a commercially available medium (CM) on EV yield.

ANIMALS: Banked bone marrow-derived MSCs (BM-MSCs) from 6 healthy, young horses were used.

METHODS: 4 microcarriers (collagen-coated polystyrene, uncoated polystyrene, collagen-coated dextran, and uncoated dextran) were tested in static and bioreactor cultures, and the optimal microcarrier was chosen. The BM-MSCs were inoculated into a bioreactor with collagen-coated dextran microcarriers at 5,000 cells/cm2 or onto culture dishes at 4,000 cells/cm2 in either Dulbecco modified Eagle medium or CM media. Supernatants were obtained for metabolite and pH analysis. The BM-MSCs were expanded until confluent (2-D) or for 7 days (3-D) when the 48-hour EV collection period commenced using EV-depleted media. Extracellular vesicles were isolated and characterized via nanoparticle tracking analysis, Western blot, transmission electron microscopy, and protein quantification. The BM-MSCs were harvested, quantified, and immunophenotyped.

RESULTS: The number of EVs isolated was not improved by 3-D culture or CM media, however, the CM 3-D condition improved the number of EVs produced per BM-MSC over the CM 2-D condition (mean ± SD: 306 ± 99 vs 37 ± 22, respectively). Glucose decreased and lactate and ammonium accumulated in 3-D culture. Surface markers of stemness exhibited reduced expression in 3-D culture.

CLINICAL RELEVANCE: Optimization of our 3-D culture methods could improve BM-MSC expansion and thus EV yield.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app