Add like
Add dislike
Add to saved papers

Multicenter Hierarchical Federated Learning With Fault-Tolerance Mechanisms for Resilient Edge Computing Networks.

In the realm of federated learning (FL), the conventional dual-layered architecture, comprising a central parameter server and peripheral devices, often encounters challenges due to its significant reliance on the central server for communication and security. This dependence becomes particularly problematic in scenarios involving potential malfunctions of devices and servers. While existing device-edge-cloud hierarchical FL (HFL) models alleviate some dependence on central servers and reduce communication overheads, they primarily focus on load balancing within edge computing networks and fall short of achieving complete decentralization and edge-centric model aggregation. Addressing these limitations, we introduce the multicenter HFL (MCHFL) framework. This innovative framework replaces the traditional single central server architecture with a distributed network of robust global aggregation centers located at the edge, inherently enhancing fault tolerance crucial for maintaining operational integrity amidst edge network disruptions. Our comprehensive experiments with the MNIST, FashionMNIST, and CIFAR-10 datasets demonstrate the MCHFL's superior performance. Notably, even under high paralysis ratios of up to 50%, the MCHFL maintains high accuracy levels, with maximum accuracy reductions of only 2.60%, 5.12%, and 16.73% on these datasets, respectively. This performance significantly surpasses the notable accuracy declines observed in traditional single-center models under similar conditions. To the best of our knowledge, the MCHFL is the first edge multicenter FL framework with theoretical underpinnings. Our extensive experimental results across various datasets validate the MCHFL's effectiveness, showcasing its higher accuracy, faster convergence speed, and stronger robustness compared to single-center models, thereby establishing it as a pioneering paradigm in edge multicenter FL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app