Add like
Add dislike
Add to saved papers

Role of KCNK3 Dysfunction in Dasatinib-associated PAH and Endothelial Cell Dysfunction.

Pulmonary arterial hypertension (PAH) is severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (coding for outward K+ channel) variant in a patient with dasatinib-associated PAH, and we investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control-human in pulmonary arterial smooth muscle cells (hPASMCs) and pulmonary endothelial cells (hPECs), we evaluated the consequence of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to pulmonary artery constriction by decreasing KCNK3 function and expression. In control-hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control-hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in the KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app