Add like
Add dislike
Add to saved papers

Intracellular Delivery of Therapeutic Protein via Ultrathin Layered Double Hydroxide Nanosheets.

Pharmaceutics 2024 March 20
The therapeutic application of biofunctional proteins relies on their intracellular delivery, which is hindered by poor cellular uptake and transport from endosomes to cytoplasm. Herein, we constructed a two-dimensional (2D) ultrathin layered double hydroxide (LDH) nanosheet for the intracellular delivery of a cell-impermeable protein, gelonin, towards efficient and specific cancer treatment. The LDH nanosheet was synthesized via a facile method without using exfoliation agents and showed a high loading capacity of proteins (up to 182%). Using 2D and 3D 4T1 breast cancer cell models, LDH-gelonin demonstrated significantly higher cellular uptake efficiency, favorable endosome escape ability, and deep tumor penetration performance, leading to a higher anticancer efficiency, in comparison to free gelonin. This work provides a promising strategy and a generalized nanoplatform to efficiently deliver biofunctional proteins to unlock their therapeutic potential for cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app