Add like
Add dislike
Add to saved papers

Effects of Stationary Bikes and Elliptical Machines on Knee Joint Kinematics during Exercise.

Medicina 2024 March 19
Background and Objectives: This study examined the influence of stationary bikes and elliptical machines on knee movement and joint load during exercise. Materials and Methods : Twelve healthy male participants engaged in pedaling exercises on stationary bikes and elliptical machines at speeds of 50 and 70 revolutions per minute (rpm). Knee movement and joint load were assessed using a motion analysis system. Results : The results indicated that elliptical machines induced higher knee joint torque compared to stationary bikes. Notably, peak torque occurred at different joint angles, with stationary bikes reaching an earlier peak at 70°-110° and elliptical machines showing a later peak at 135°-180°. Increased pedaling speed correlated with higher peak knee joint torque on both machines. With the elliptical machine, a higher pedaling frequency correlated with increased peak forces on the knee and ankle joints, as well as vertically. Interestingly, both types of equipment were associated with enhanced peak knee joint torques during high-speed pedaling. Conversely, constant pedaling on elliptical machines limited the ankle angle and could induce inward rotation. Conclusions : This study focused on knee joint torque variations during pedaling on indoor stationary bicycles and elliptical machines. Elliptical machines showed higher peak values of forces and torque, particularly during the propulsive and recovery phases, indicating potential challenges to the knee joint. Notably, peak pedal angles occurred earlier on indoor stationary bicycles, emphasizing the impact of equipment choice on joint kinetics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app