Add like
Add dislike
Add to saved papers

Nonderivatized Method for the Detection of Perfluoroalkane Sulfonyl Fluorides by Liquid Chromatography-Microwave Plasma Torch Ionization Mass Spectrometry.

Analytical Chemistry 2024 March 27
Per- and polyfluoroalkyl substances (PFAS) have caused widespread environmental concern in recent years. Among them, the levels of perfluoroalkane sulfonyl fluorides (PFASFs) in the environment have rarely been reported due to the lack of sensitive analytical methods. Herein, a novel liquid chromatography-microwave plasma torch ionization-mass spectrometry (LC-MPTI-MS) technique was designed for the direct analysis of PFASFs in the environment. The collaborative action of reactive oxygen species (such as hydroxyl radicals) and the elevated temperature within the ambient MPTI environment results in the replacement of the fluorine atom in sulfonyl fluoride by oxygen, leading to the detection of perfluoroalkanesulfonic acid (PFSA) ions by MS. Concurrently, LC was employed to separate other PFSAs that are present in the environment. Three PFASFs exhibited good linearity within the range of 1-500 μg/L with R 2 > 0.994. The limit of detections (LODs) and the limit of quantifications (LOQs) were measured at 39.32-87.87 and 131.07-292.90 ng/L, respectively. The method was utilized for the direct detection of spiked perfluorooctane sulfonyl fluoride (PFOSF) in wastewater with recoveries of 77.16 to 124.81%. Our approach circumvents the laborious process of chemical derivatization and is anticipated to serve as a robust tool for determining the levels and behaviors of PFASFs in the environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app