Add like
Add dislike
Add to saved papers

Mechanistic insights into sodium ion-mediated ligand binding affinity and modulation of 5-HT2B GPCR activity: implications for drug discovery and development.

PURPOSE: The G-protein coupled receptor (GPCR) family, implicated in neurological disorders and drug targets, includes the sensitive serotonin receptor subtype, 5-HT2B. The influence of sodium ions on ligand binding at the receptor's allosteric region is being increasingly studied for its impact on receptor structure.

METHODS: High-throughput virtual screening of three libraries, specifically the Asinex-GPCR library, which contains 8,532 compounds and FDA-approved (2466 compounds) and investigational compounds (2731)) against the modeled receptor [4IB4-5HT2B RM ] using the standard agonist/antagonist (Ergotamine/Methysergide), as previously selected from our studies based on ADMET profiling, and further on basis of binding free energy a single compound - dihydroergotamine is chosen.

RESULTS: This compound displayed strong interactions with the conserved active site. Ions influence ligand binding, with stronger interactions (3-H-bonds and 1-π-bond around 3.35 Å) observed when an agonist and ions are present. Ions entry is guided by conserved motifs in helices III, IV, and VII, which regulate the receptor. Dihydroergotamine, the selected drug, showed binding variance based on ions presence/absence, affecting amino acid residues in these motifs. DCCM and PCA confirmed the stabilization of ligands, with a greater correlation (∼46.6%-PC1) observed with ions. Dihydroergotamine-modified interaction sites within the receptor necessary for activation, serving as a potential 5HT2B RM agonist. RDF analysis showed the sodium ions density around the active site during dihydroergotamine binding.

CONCLUSION: Our study provides insights into sodium ion mobility's role in controlling ligand binding affinity in 5HT2B R, offering therapeutic development insights.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app