Add like
Add dislike
Add to saved papers

Pseudodesulfovibrio pelocollis sp. nov. a Sulfate-Reducing Bacterium Isolated from a Terrestrial Mud Volcano.

Current Microbiology 2024 March 26
Terrestrial mud volcanoes (TMVs), surface expressions of a deep-subterranean sedimentary volcanism, are widespread throughout the world. The methane and sulfur cycles are recognized as the most important biogeochemical cycles in these environments. Only few anaerobic bacterial strains were recovered from TMVs. We have isolated a novel sulfate-reducing bacterium (strain SB368T ) from TMV located at Taman Peninsula, Russia. Optimum growth of strain SB368T was observed at 30 °C, pH 8.0 and 1% NaCl. Strain SB368T utilized lactate, pyruvate and fumarate in the presence of sulfate, sulfite or thiosulfate. Growth with molecular hydrogen was observed only in the presence of acetate. Fermentative growth occurred on pyruvate. Phylogenetic analysis revealed that strain SB368T belongs to the genus Pseudodesulfovibrio but is distinct from all described species. Based on its genomic and phenotypic properties, a new species, Pseudodesulfovibrio pelocollis sp. nov. is proposed with strain SB368T (= DSM 111087 T  = VKM B-3585 T ) as a type strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app