Add like
Add dislike
Add to saved papers

Matrix Gla protein and the long-term incidence and progression of coronary artery and aortic calcification in the Multi-Ethnic Study of Atherosclerosis.

Atherosclerosis 2024 March 6
BACKGROUND AND AIMS: Matrix Gla protein (MGP) is an inhibitor of calcification that requires carboxylation by vitamin K for activity. The inactive form of MGP, dephosphorylated-uncarboxylated matrix Gla protein (dp-ucMGP), has been associated with increased calcification. However, it is not known whether there is a longitudinal relationship between dephosphorylated-uncarboxylated matrix Gla protein levels and coronary and aortic calcification in large population cohorts.

METHODS: The Multi-Ethnic Study of Atherosclerosis (MESA) followed participants with serial cardiac computed tomography (CT) measures of vascular calcification. Dp-ucMGP was measured at baseline in a subset of participants who completed baseline and follow-up CTs approximately 10 years later and had available plasma specimens (n = 2663). Linear mixed effects models (LMMs) were used to determine the association of dp-ucMGP with the simultaneous incidence and progression of coronary artery, ascending thoracic aortic, or descending thoracic aortic calcification (CAC, ATAC, DTAC)].

RESULTS: For every one standard deviation (SD, 178 pmol/L) increment in dp-ucMGP, CAC increased by 3.44 ([95% CI = 1.68, 5.21], p < 0.001) Agatston units/year (AU/year), ATAC increased by 0.63 ([95% CI = 0.27, 0.98], p = 0.001) AU/year, and DTAC increased by 8.61 ([95% CI = 4.55, 12.67], p < 0.001) AU/year. The association was stronger for DTAC in those ≥65 years and with diabetes.

CONCLUSIONS: We found a positive association of the inactive form of matrix Gla protein, dp-ucMGP, and long-term incidence/progression of CAC, ATAC, and DTAC. Future studies should investigate dp-ucMGP as a calcification regulator and MGP as a possible therapeutic target to slow progression of calcification in the vasculature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app