Add like
Add dislike
Add to saved papers

Glycine-rich peptides from fermented Chenopodium formosanum sprout as an antioxidant to modulate the oxidative stress.

Rhizopus oligosporus was utilized in the solid-state fermentation of Chenopodiumformosanumsprouts (FCS) in a bioreactor. Subsequently, the antioxidant activity of food proteins derived from FCS was investigated. Results showed that glycine-rich peptide (GGGGGKP, G-rich peptide), identified from the <2 kDa FCS proteins, had antioxidant values. According to SwissADME, AllerTOP, ToxinPred, and BIOPEP-UWM analyses, G-rich peptide was identified as safe, non-toxic, and non-allergenic. Afterward, the peptide was examined using in silico and in vitro studies to evaluate its potential alleviating oxidative stress caused by particulate matter. This study proposed plausible mechanisms that involve the binding of G-rich peptide which inhibited phosphorylation of the v-rel avian reticuloendotheliosis viral oncogene homologA(RELA) subunit onNF-κB pathway. The inhibition then resulted in down regulation of NF-κB transcription and genetic expression of inflammatory responses. These findings suggested that G-rich peptide from FCS proteins can potentially alleviate oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app