Add like
Add dislike
Add to saved papers

Skeletal muscle fiber type and TMS-induced muscle relaxation in unfatigued and fatigued knee-extensor muscles.

The force drop after transcranial magnetic stimulation (TMS) delivered to the motor cortex during voluntary muscle contractions could inform about muscle relaxation properties. Because of the physiological relation between skeletal muscle fiber type distribution and size and muscle relaxation, TMS could be a non-invasive index of muscle relaxation in humans. By combining a non-invasive technique to record muscle relaxation in vivo (TMS) with the gold standard technique for muscle tissue sampling (muscle biopsy), we investigated the relation between TMS-induced muscle relaxation in unfatigued and fatigued states, and muscle fiber type distribution and size. Sixteen participants (7F/9M) volunteered to participate. Maximal knee-extensor voluntary isometric contractions were performed with TMS before and after a 2-min sustained maximal voluntary isometric contraction. Vastus lateralis muscle tissue was obtained separately from the participants' dominant limb. Fiber type I distribution and relative cross-sectional area of fiber type I correlated with TMS-induced muscle relaxation at baseline [r = 0.67, adjusted P = 0.01; r = 0.74, adjusted P = 0.004, respectively] and normalized TMS-induced muscle relaxation as a percentage of baseline [r = 0.50, adjusted P = 0.049; r = 0.56, adjusted P = 0.031, respectively]. The variance in the normalized peak relaxation rate at baseline (59.8%, P < 0.001) and in the fatigue resistance (23.0%, P = 0.035) were explained by the relative cross-sectional area of fiber type I to total fiber area. Fiber type I proportional area influences TMS-induced muscle relaxation, suggesting TMS as an alternative method to non-invasively inform about skeletal muscle relaxation properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app