Add like
Add dislike
Add to saved papers

Kinetic Model for the Heterogeneous Biocatalytic Reactions Using Tethered Cofactors.

Understanding the mechanism of interfacial enzyme kinetics is critical to the development of synthetic biological systems for the production of value-added chemicals. Here, the interfacial kinetics of the catalysis of β-nicotinamide adenine dinucleotide (NAD+ )-dependent enzymes acting on NAD+ tethered to the surface of silica nanoparticles (SiNPs) has been investigated using two complementary and supporting kinetic approaches: enzyme excess and reactant (NAD+ ) excess. Kinetic models developed for these two approaches characterize several critical reaction steps including reversible enzyme adsorption, complexation, decomplexation, and catalysis of the surface-bound enzyme/NAD+ complex. The analysis reveals a concentrating effect resulting in a very high local concentration of enzyme and cofactor on the particle surface, in which the enzyme is saturated by surface-bound NAD, facilitating a rate enhancement of enzyme/NAD+ complexation and catalysis. This resulted in high enzyme efficiency within the tethered NAD+ system compared to that of the free enzyme/NAD+ system, which increases with decreasing enzyme concentration. The role of enzyme adsorption onto solid substrates with a tethered catalyst (such as NAD+ ) has potential for creating highly efficient flow biocatalytic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app