Add like
Add dislike
Add to saved papers

Emerging measurements for tumor-infiltrating lymphocytes in breast cancer.

Tumor-infiltrating lymphocytes are a general term for lymphocytes or immune cells infiltrating the tumor microenvironment. Numerous studies have demonstrated tumor-infiltrating lymphocytes to be robust prognostic and predictive biomarkers in breast cancer. Recently, immune checkpoint inhibitors, which directly target tumor-infiltrating lymphocytes, have become part of standard of care treatment for triple-negative breast cancer. Surprisingly, tumor-infiltrating lymphocytes quantified by conventional methods do not predict response to immune checkpoint inhibitors, which highlights the heterogeneity of tumor-infiltrating lymphocytes and the complexity of the immune network in the tumor microenvironment. Tumor-infiltrating lymphocytes are composed of diverse immune cell populations, including cytotoxic CD8-positive T lymphocytes, B cells and myeloid cells. Traditionally, tumor-infiltrating lymphocytes in tumor stroma have been evaluated by histology. However, the standardization of this approach is limited, necessitating the use of various novel technologies to elucidate the heterogeneity in the tumor microenvironment. This review outlines the evaluation methods for tumor-infiltrating lymphocytes from conventional pathological approaches that evaluate intratumoral and stromal tumor-infiltrating lymphocytes such as immunohistochemistry, to the more recent advancements in computer tissue imaging using artificial intelligence, flow cytometry sorting and multi-omics analyses using high-throughput assays to estimate tumor-infiltrating lymphocytes from bulk tumor using immune signatures or deconvolution tools. We also discuss higher resolution technologies that enable the analysis of tumor-infiltrating lymphocytes heterogeneity such as single-cell analysis and spatial transcriptomics. As we approach the era of personalized medicine, it is important for clinicians to understand these technologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app