Add like
Add dislike
Add to saved papers

Improved production of RNA-inhibiting antimicrobial peptide by Bacillus licheniformis MCC 2514 facilitated by a genetic algorithm optimized medium.

One of the significant challenges during the purification and characterization of antimicrobial peptides (AMPs) from Bacillus sp. is the interference of unutilized peptides from complex medium components during analytical procedures. In this study, a semi-synthetic medium was devised to overcome this challenge. Using a genetic algorithm, the production medium of AMP is optimized. The parent organism, Bacillus licheniformis MCC2514, produces AMP in very small quantities. This AMP is known to inhibit RNA biosynthesis. The findings revealed that lactose, NH4 Cl and NaNO3 were crucial medium constituents for enhanced AMP synthesis. The potency of the AMP produced was studied using bacterium, Kocuria rhizophila ATCC 9341. The AMP produced from the optimized medium was eightfold higher than that produced from the unoptimized medium. Furthermore, activity was increased by 1.5-fold when cultivation conditions were standardized using the optimized medium. Later, AMP was produced in a 5 L bioreactor under controlled conditions, which led to similar results as those of shake-flask production. The mode of action of optimally produced AMP was confirmed to be inhibition of RNA biosynthesis. Here, we demonstrate that improved production of AMP is possible with the developed semi-synthetic medium recipe and could help further AMP production in an industrial setup.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app