Add like
Add dislike
Add to saved papers

Observing G4 formation and its resolution by Pif1 in real time by manipulation under magnetic tweezers.

G-quadruplexes (G4s) are nucleic acids secondary structures that may form in guanine-rich sequences, either intra or inter-molecularly. Ability of a primary sequence to form a G4 can be predicted computationally with an improving accuracy as well as tested in bulk using biophysical measurements. As a result, G4 density maps have been devised for a large number of genomes from all life kingdoms. Experimental validation of the formation of G4s in vivo however remains indirect and relies on their stabilization with small molecules, antibodies or proteins, or mutational studies, in order to measure downstream effects on gene expression or genome stability for example. Although numerous techniques exist to observe spontaneous formation of G4s in single-stranded DNA, observing G4 formation in double-stranded DNA (dsDNA) is more challenging. However, it is particularly relevant to understand if a given G4 sequence forms stably in a dsDNA context, if it is stable enough to dock proteins or pose a challenge to molecular motors such as helicases or polymerases. In essence, G4s can be a threat to genomic stability but carry as well as the potential to be elements of a structural language in the non-replicating genome. To study quantitatively the formation dynamics and stability of single intramolecular G4s embedded in dsDNA, we have adapted techniques of DNA manipulation under magnetic tweezers. This technique also allows to study encounters of molecular motors with G4 at a single molecule resolution, in order to gain insight into the specificity of G4 resolution by molecular motors, and its efficiency. The procedures described here include the design of the G4 substrate, the study of G4 formation probability and lifetime in dsDNA, as well as procedures to characterize the encounter between the Pif1 helicase and a G4 until G4 resolution. The procedures that we described here can easily be extended to the study of other G4s or molecular motors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app