Read by QxMD icon Read

Methods in Enzymology

Maria Spies, Anna Malkova
No abstract text is available yet for this article.
2018: Methods in Enzymology
Terrence Hanscom, Varandt Y Khodaverdian, Mitch McVey
In this chapter, we describe a method for the recovery and analysis of alternative end-joining (alt-EJ) DNA double-strand break repair junctions following I-SceI cutting in Drosophila melanogaster embryos. Alt-EJ can be defined as a set of Ku70/80 and DNA ligase 4-independent end-joining processes that are typically mutagenic, producing deletions, insertions, and chromosomal rearrangements more frequently than higher-fidelity repair pathways such as classical nonhomologous end joining or homologous recombination...
2018: Methods in Enzymology
Luther Davis, Yinbo Zhang, Nancy Maizels
Nicks are the most common form of DNA damage, but they have only recently been shown to initiate damage that requires repair. Analysis of the pathways of nick repair in human cells has benefited from the development of enzymes that target nicks to specific sites in the genome and of reporters that enable rapid analysis of homology-directed repair and mutagenic end joining. Nicks undergo efficient repair by single-stranded oligonucleotide donors complementary to either the nicked or intact DNA strand, via pathways that are normally suppressed by RAD51...
2018: Methods in Enzymology
Havva Keskin, Francesca Storici
A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively...
2018: Methods in Enzymology
Lorenza Garribba, Wei Wu, Özgün Özer, Rahul Bhowmick, Ian D Hickson, Ying Liu
Our conventional understanding of the process of DNA replication is that it occurs in the S-phase of the cell division cycle. However, during investigations into the mechanism by which common fragile sites (CFSs) drive genome instability, we observed that some DNA synthesis was still occurring in early mitosis at these loci. This curious phenomenon of mitotic DNA synthesis (which we now term "MiDAS") appears to be a form of break-induced DNA replication (BIR), a DNA repair process based on homologous recombination that has been characterized in detail only in lower eukaryotes...
2018: Methods in Enzymology
Kevin Brick, Florencia Pratto, Chi-Yu Sun, Rafael D Camerini-Otero, Galina Petukhova
The repair of programmed DNA double-strand breaks (DSBs) physically tethers homologous chromosomes in meiosis to allow for accurate segregation through meiotic cell divisions. This process, known as recombination, also results in the exchange of alleles between parental chromosomes and contributes to genetic diversity. In mammals, meiotic DSBs occur predominantly in a small fraction of the genome, at sites known as hotspots. Studies of the formation and repair of meiotic DSBs in mammals are challenging, because few cells undergo meiotic DSB formation at a given time...
2018: Methods in Enzymology
Christopher P Caridi, Laetitia Delabaere, Harianto Tjong, Hannah Hopp, Devika Das, Frank Alber, Irene Chiolo
Heterochromatin is mostly composed of long stretches of repeated DNA sequences prone to ectopic recombination during double-strand break (DSB) repair. In Drosophila, "safe" homologous recombination (HR) repair of heterochromatic DSBs relies on a striking relocalization of repair sites to the nuclear periphery. Central to understanding heterochromatin repair is the ability to investigate the 4D dynamics (movement in space and time) of repair sites. A specific challenge of these studies is preventing phototoxicity and photobleaching effects while imaging the sample over long periods of time, and with sufficient time points and Z-stacks to track repair foci over time...
2018: Methods in Enzymology
Hardeep Kaur, Jasvinder S Ahuja, Michael Lichten
Proteins with potential roles in meiotic recombination often have essential or important functions during the mitotic cell cycle. In addition, proteins may have different functions at different times during meiosis. In such cases, it can be challenging to precisely determine protein function during meiosis using null or hypomorphic mutants. One example is the Sgs1-Top3-Rmi1 helicase-decatenase complex, which is required for normal vegetative growth and genome stability. In such cases, conditional loss-of-function mutants can be useful...
2018: Methods in Enzymology
Eleni P Mimitou, Scott Keeney
During meiosis, the specialized cell division giving rise to gametes, numerous DNA double-strand breaks (DSBs) are introduced at multiple places throughout the genome by the topoisomerase-like protein Spo11. Homologous recombination, a highly conserved DSB repair pathway, is employed for their repair and ensures the formation of chiasmata and the proper segregation of homologous chromosomes. In the initial steps of recombination, end resection takes place, wherein Spo11 is endonucleolytically released and the 5'-terminal strands of each DSB are exonucleolytically processed, exposing the ssDNA necessary to identify a homologous repair template...
2018: Methods in Enzymology
Shannon Owens, Shangming Tang, Neil Hunter
Homologous recombination is fundamental to sexual reproduction, facilitating accurate segregation of homologous chromosomes at the first division of meiosis, and creating novel allele combinations that fuel evolution. Following initiation of meiotic recombination by programmed DNA double-strand breaks (DSBs), homologous pairing and DNA strand exchange form joint molecule (JM) intermediates that are ultimately resolved into crossover and noncrossover repair products. Physical monitoring of the DNA steps of meiotic recombination in Saccharomyces cerevisiae (budding yeast) cultures undergoing synchronous meiosis has provided seminal insights into the molecular basis of meiotic recombination and affords a powerful tool for dissecting the molecular roles of recombination factors...
2018: Methods in Enzymology
Aurèle Piazza, Romain Koszul, Wolf-Dietrich Heyer
Homologous recombination faithfully restores the sequence information interrupted by a DNA double-strand break by referencing an intact DNA molecule as a template for repair DNA synthesis. DNA synthesis is primed from 3'-OH end of the invading DNA strand in the displacement loop (D-loop). Here, we describe a simple and quantitative proximity ligation-based assay to study the initiation of homologous recombination-associated DNA synthesis initiated at the D-loop and final product formation. The D-loop extension assay overcomes the semiquantitative nature and some limitations of the current PCR-based technique and facilitates the study of the recombination-associated DNA synthesis...
2018: Methods in Enzymology
Quinn Li, Laura Folly da Silva Constantino, M Ashley Spies
Discovery of novel tool compounds and drug leads against a range of unorthodox protein targets has pushed both experimental screening methodologies as well as the field of structure-based design to the limit in recent years. Increasingly, it has been recognized that some of the most desirable targets for the development of small-molecule effectors are actually protein-protein and protein-nucleic acid interactions. There are numerous nontrivial challenges to pursuing small-molecule lead compounds directed toward PPIs and PNIs: relatively shallow cavities, large surface areas that are natively complexed to macromolecules, complex patterns of interstitial waters, a paucity of "hot spots," large conformational changes upon ligand binding, etc...
2018: Methods in Enzymology
Davide Moiani, Daryl A Ronato, Chris A Brosey, Andrew S Arvai, Aleem Syed, Jean-Yves Masson, Elena Petricci, John A Tainer
For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity...
2018: Methods in Enzymology
Rajula Elango, Zachary Kockler, Liping Liu, Anna Malkova
Break-induced replication (BIR) is an important mechanism aimed to repair one-ended double-strand DNA breaks. BIR is initiated by invasion of a broken DNA end into a homologous template followed by DNA synthesis that can proceed for hundreds of kilobases to the end of the chromosome. Unlike S-phase replication, BIR is carried out by a migrating DNA bubble and is associated with conservative inheritance of newly synthesized DNA. The unusual mode of DNA synthesis during BIR leads to an increased level of genetic instabilities including increased mutagenesis and chromosomal rearrangements...
2018: Methods in Enzymology
Gajendrahar Dwivedi, James E Haber
DNA double-strand break (DSB) is a cytotoxic lesion and needs to be repaired immediately. There are several metabolic pathways evolved to repair a DSB. Gene conversion is one of the least error-prone pathway for repair of a DNA DSB. Despite this there is nearly 1000-fold increase in mutation rate associated with gene conversion. Not only higher mutation rate is associated with gene conversion but also there is a very distinct mutation profile compared to spontaneous mutation events. Gene conversion is characterized by the presence of very high frameshift mutation events and other complex mutations that are not present during regular DNA replication...
2018: Methods in Enzymology
Alexander J Brown, Aneesa T Al-Soodani, Miles Saul, Stephanie Her, Juan C Garcia, Dale A Ramsden, Chengtao Her, Steven A Roberts
The mechanistic understanding of how DNA double-strand breaks (DSB) are repaired is rapidly advancing in part due to the advent of inducible site-specific break model systems as well as the employment of next-generation sequencing (NGS) technologies to sequence repair junctions at high depth. Unfortunately, the sheer volume of data produced by these methods makes it difficult to analyze the structure of repair junctions manually or with other general-purpose software. Here, we describe methods to produce amplicon libraries of DSB repair junctions for sequencing, to map the sequencing reads, and then to use a robust, custom python script, Hi-FiBR, to analyze the sequence structure of mapped reads...
2018: Methods in Enzymology
Kristoffer P Jakobsen, Lotte Bjergbæk
A natural and frequent occurring replication insult is generated by the action of DNA Topoisomerase I (Top1). When Top1 gets trapped in a cleavage complex on the DNA, a protein-linked DNA nick (PDN) is generated. Today it is known that PDNs are generated at a high incidence in the cell. If not rapidly removed, PDNs can have a profound impact on cell destiny, as a nick in proliferating cells is passively transformed into a single-ended DSB, when encountered by the replication machinery. A DSB can in turn lead to chromosomal rearrangements and thus jeopardize genome stability if not appropriately repaired...
2018: Methods in Enzymology
Maria Spies, Anna Malkova
No abstract text is available yet for this article.
2018: Methods in Enzymology
Cosimo Pinto, Roopesh Anand, Petr Cejka
DNA end resection initiates the largely accurate repair of DNA double-strand breaks (DSBs) by homologous recombination. Specifically, recombination requires the formation of 3' overhangs at DSB sites, which is carried out by nucleases that specifically degrade 5'-terminated DNA. In most cases, DNA end resection is a two-step process, comprising of initial short-range followed by more processive long-range resection. In this chapter, we describe selected assays that reconstitute both the short- and long-range pathways...
2018: Methods in Enzymology
Rajvee Shah Punatar, Stephen C West
Holliday junctions provide a covalent link between recombining DNA molecules and need to be removed prior to chromosome segregation at mitosis. Defects in their resolution lead to mitotic catastrophe, characterized by the formation of DNA breaks and chromosome aberrations. Enzymes that resolve recombination intermediates have been identified in all forms of life, from bacteriophage, to bacteria, yeast, and humans. In higher eukaryotes, Holliday junctions are resolved by GEN1, a nuclease that is mechanistically similar to the prototypic resolvase Escherichia coli RuvC, and by the SMX trinuclease complex...
2018: Methods in Enzymology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"